Fast Protein Search by Global Shape Similarity Using Krawtchouk Moments as Features

Mindaugas Indriūnas (Mindey)

Interdisciplinary Lifescience Program
Purdue University

February 20, 2012

QKiharalab

Figure: Prof. Daisuke Kihara, Dr. Sael Lee, Hyung Rae Kim, Bin Li, David La

Background - 1

- Problem: large protein databases are hard to search. 79180 of structures in the Protein Data Bank (7 Feb 2012)
2.19 A - high resolution of available structures

A solution: Feature Extraction

Dimensionality-Reduction

Background - 1

- Problem: large protein databases are hard to search.
- 79180 of structures in the Protein Data Bank (7 Feb 2012)
2.19 Å - high resolution of available structures

A solution: Feature Extraction

Dimensionality-Reduction

Background - 1

- Problem: large protein databases are hard to search.
- 79180 of structures in the Protein Data Bank (7 Feb 2012)
- 2.19 Å - high resolution of available structures
\square

Background - 1

- Problem: large protein databases are hard to search.
- 79180 of structures in the Protein Data Bank (7 Feb 2012)
- 2.19 Å - high resolution of available structures

A solution: Feature Extraction

$$
\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{L A R G E}\right) \quad \stackrel{\mathcal{F}}{\mapsto}\left(\mathcal{F}(\mathbf{x})^{1}, \mathcal{F}(\mathbf{x})^{2}, \ldots, \mathcal{F}(\mathbf{x})^{S M A L L}\right)
$$

Figure: Dimensionality-Reduction

Background - 2

- Problem: large protein databases are hard to search.
- 79180 of structures in the Protein Data Bank (7 Feb 2012)
- 2.19 Å - high resolution of available structures

Feature Extraction (Example)

If we want to classify triangles into obtuse, right and acute:

We can speed up the process by creating features by feature map

$$
\begin{gathered}
\mathcal{F}: \mathbf{x}=(\alpha, \beta, \gamma) \stackrel{\mathcal{F}}{\mapsto}\left(\mathcal{F}(\mathbf{x})^{1}\right), \\
\text { Where } \mathcal{F}(\mathbf{x})=(\max (\mathbf{x}))
\end{gathered}
$$

Figure: Dimensionality-Reduction

Background - 3a

Moments as Features In statistics, the $n^{\text {th }}$ raw moment of a discrete distribution is defined as:

$$
\mu_{n}^{\prime}=\sum_{i=-\infty}^{+\infty} x_{i}^{n} \cdot p_{i}
$$

Example: statistical mean is the $1^{\text {st }}$ raw moment:

$\quad 1^{\text {st }}$ raw moment of a sample: $\hat{\mu}_{1}^{\prime}=\sum_{i=1}^{M} x_{i} \cdot p_{i}$, where $p_{i}=\frac{m_{i}}{N}$
\quad relative frequency of $i^{\text {th }}$ observation in sample $(M \leq N \in \mathbb{N})$. - $\mu_{1}^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \cdot\left(p_{1}, p_{2}, \ldots, p_{M}\right)^{T}$ - in terms of matrix notation. - $\mu_{1}^{\prime}=\langle\vec{x}, \vec{p}\rangle$ - in terms of inner product, " \vec{x} projection on \vec{p} ' x - our data, can similarly be projected on other functions, and it is common to denote it as $\langle\mathbf{x}, \cdot\rangle$, where the dot denotes other function.

Background - 3a

Moments as Features In statistics, the $n^{\text {th }}$ raw moment of a discrete distribution is defined as:

$$
\mu_{n}^{\prime}=\sum_{i=-\infty}^{+\infty} x_{i}^{n} \cdot p_{i}
$$

Example: statistical mean is the $1^{\text {st }}$ raw moment:

- $1^{\text {st }}$ raw moment of a sample: $\hat{\mu}_{1}^{\prime}=\sum_{i=1}^{M} x_{i} \cdot p_{i}$, where $p_{i}=\frac{m_{i}}{N}$ relative frequency of $i^{\text {th }}$ observation in sample $(M \leq N \in \mathbb{N})$.
> $\Rightarrow \mu_{1}^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \cdot\left(p_{1}, p_{2}, \ldots, p_{M}\right)^{T}$ - in terms of matrix notation - $\mu_{1}^{\prime}=\langle\vec{x}, \vec{p}\rangle$ - in terms of inner product, " \vec{x} projection on $\vec{p}{ }^{\prime \prime}$ x - our data, can similarly be projected on other functions, and it is common to denote it as $\langle\mathrm{x}, \cdot\rangle$, where the dot • denotes other function.

Background - 3a

Moments as Features In statistics, the $n^{\text {th }}$ raw moment of a discrete distribution is defined as:

$$
\mu_{n}^{\prime}=\sum_{i=-\infty}^{+\infty} x_{i}^{n} \cdot p_{i}
$$

Example: statistical mean is the $1^{\text {st }}$ raw moment:

- $1^{\text {st }}$ raw moment of a sample: $\hat{\mu}_{1}^{\prime}=\sum_{i=1}^{M} x_{i} \cdot p_{i}$, where $p_{i}=\frac{m_{i}}{N}$ relative frequency of $i^{\text {th }}$ observation in sample $(M \leq N \in \mathbb{N})$.
- $\mu_{1}^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \cdot\left(p_{1}, p_{2}, \ldots, p_{M}\right)^{T}$ - in terms of matrix notation.
$\Rightarrow \mu_{1}^{\prime}=\langle\vec{x}, \vec{p}\rangle$ - in terms of inner product, " \vec{x} projection on $\vec{p}{ }^{\prime \prime}$
x - our data, can similarly be projected on other functions, and it is common to denote it as $\langle\mathbf{x}, \cdot\rangle$, where the dot denotes other function.

Background - 3a

Moments as Features In statistics, the $n^{\text {th }}$ raw moment of a discrete distribution is defined as:

$$
\mu_{n}^{\prime}=\sum_{i=-\infty}^{+\infty} x_{i}^{n} \cdot p_{i}
$$

Example: statistical mean is the $1^{\text {st }}$ raw moment:

- $1^{\text {st }}$ raw moment of a sample: $\hat{\mu}_{1}^{\prime}=\sum_{i=1}^{M} x_{i} \cdot p_{i}$, where $p_{i}=\frac{m_{i}}{N}$ relative frequency of $i^{t h}$ observation in sample ($M \leq N \in \mathbb{N}$).
- $\mu_{1}^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \cdot\left(p_{1}, p_{2}, \ldots, p_{M}\right)^{T}$ - in terms of matrix notation.
- $\mu_{1}^{\prime}=\langle\vec{x}, \vec{p}\rangle$ - in terms of inner product, " \vec{x} projection on $\vec{p} "$
x - our data, can similarly be projected on other functions, and it is common to denote it as $\langle\mathbf{x}, \cdot\rangle$, where the dot • denotes other function.

Background - 3a

Moments as Features In statistics, the $n^{\text {th }}$ raw moment of a discrete distribution is defined as:

$$
\mu_{n}^{\prime}=\sum_{i=-\infty}^{+\infty} x_{i}^{n} \cdot p_{i}
$$

Example: statistical mean is the $1^{\text {st }}$ raw moment:

- $1^{\text {st }}$ raw moment of a sample: $\hat{\mu}_{1}^{\prime}=\sum_{i=1}^{M} x_{i} \cdot p_{i}$, where $p_{i}=\frac{m_{i}}{N}$ relative frequency of $i^{\text {th }}$ observation in sample $(M \leq N \in \mathbb{N})$.
- $\mu_{1}^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \cdot\left(p_{1}, p_{2}, \ldots, p_{M}\right)^{T}$ - in terms of matrix notation.
- $\mu_{1}^{\prime}=\langle\vec{x}, \vec{p}\rangle$ - in terms of inner product, " \vec{x} projection on $\vec{p} "$
\mathbf{x} - our data, can similarly be projected on other functions, and it is common to denote it as $\langle\mathbf{x}, \cdot\rangle$, where the dot \cdot denotes other function.

Background - 3b

Other commonly known moments in inner product notation:

Variance

$$
\mu_{2}=E\left[(X-\mu)^{2}\right]=\left\langle(X-\mu)^{2}, \vec{p}_{X-\mu}\right\rangle
$$

Main idea: moments characterize shape of a distribution.
More generally - shape of a function, such as $f(x, y, z)$ - our data.

Background - 3b

Other commonly known moments in inner product notation:

Variance

$$
\mu_{2}=E\left[(X-\mu)^{2}\right]=\left\langle(X-\mu)^{2}, \vec{p}_{X-\mu}\right\rangle
$$

Skewness

$$
\mu_{3}=E\left[\left(\frac{x-\mu}{\sigma}\right)^{3}\right]=\left\langle\left(\frac{x-\mu}{\sigma}\right)^{3}, \vec{p}_{\frac{x-\mu}{\sigma}}\right\rangle
$$

Main idea: moments characterize shape of a distribution.
More generally - shape of a function, such as $f(x, y, z)$ - our data.

Background - 3b

Other commonly known moments in inner product notation:

Variance

$$
\mu_{2}=E\left[(X-\mu)^{2}\right]=\left\langle(X-\mu)^{2}, \vec{p}_{X-\mu}\right\rangle
$$

Skewness

$$
\mu_{3}=E\left[\left(\frac{x-\mu}{\sigma}\right)^{3}\right]=\left\langle\left(\frac{x-\mu}{\sigma}\right)^{3}, \vec{p} \frac{x-\mu}{\sigma}\right\rangle
$$

Kurtosis

$$
\mu_{4}=E\left[\left(\frac{X-\mu}{\sigma}\right)^{4}\right]=\left\langle\left(\frac{x-\mu}{\sigma}\right)^{4}, \vec{p} \frac{X-\mu}{\sigma}\right\rangle
$$

Main idea: moments characterize shape of a distribution.

Background - 3b

Other commonly known moments in inner product notation:

Variance

$$
\mu_{2}=E\left[(X-\mu)^{2}\right]=\left\langle(X-\mu)^{2}, \vec{p}_{X-\mu}\right\rangle
$$

Skewness

$$
\mu_{3}=E\left[\left(\frac{x-\mu}{\sigma}\right)^{3}\right]=\left\langle\left(\frac{x-\mu}{\sigma}\right)^{3}, \vec{p}_{\frac{x-\mu}{\sigma}}\right\rangle
$$

Kurtosis

$$
\mu_{4}=E\left[\left(\frac{X-\mu}{\sigma}\right)^{4}\right]=\left\langle\left(\frac{X-\mu}{\sigma}\right)^{4}, \vec{p} \frac{X-\mu}{\sigma}\right\rangle
$$

Main idea: moments characterize shape of a distribution.
More generally - shape of a function, such as $f(x, y, z)$ - our data.

Background - 3c (Dr. Sael Lee's focus)

3D Zernike Descriptors - data f projections in Zernike functions:

 $Z_{n l}^{m}(r, \varphi, \phi)=R_{n I}(r) Y_{l}^{m}(\varphi, \phi)$, where $Y_{I}^{m}(\varphi, \phi)$ are spherical harmonics of the $I^{\text {th }}$ degree with $I \leq n, m \in[-I, I]$, and $n-I$ even non-negative.$R_{n I}(r)$ are radial polynomials, where r is the radius defined so that $Z_{n I}^{m}(x)$ are orthonormal polynomials, when written in Cartesian coordinates.
For a 3D function $f(x)$ where $x \in \mathbb{R}^{3}$, the 3D Zernike moments are given by:

$$
\Omega_{n l}^{m}=\left\langle f, Z_{n l}^{m}\right\rangle=\frac{3}{4 \pi} \sum_{r+s+t \leq n} \chi_{n l m}^{r s t} M_{r s t}
$$

The above equation is expressed as a linear combination of geometric moments of order n where $M_{\text {rst }}$ denotes the geometrical moment of the object normalized to fit in the unit sphere and $\chi_{n / m}^{\text {rst }}$ is a set of complex coefficients.
Since thus defined moments are not rotationally invariant, they are collected into $(2 /+1)$-dimensional vectors and the norms $(\|\cdot\|)$ of the vectors $\Omega_{n /}=\left[\Omega_{n /}^{\prime}, \ldots, \Omega_{n /}^{-/}\right]$define the rotationally invariant 3D Zernike descriptors:

$$
\begin{gathered}
F_{n I}=\left\|\Omega_{n \prime}\right\| \\
\mathcal{F}:\left(x^{1}, x^{2}, \ldots, x^{L A R G E}\right) \mapsto\left[F_{n \prime}^{1}(\mathbf{x}), F_{n \prime}^{2}(\mathbf{x}), \ldots, F_{n \prime}^{S M A L L}(\mathbf{x})\right]
\end{gathered}
$$

"Hypothesis" - 1 (My focus)

3D Krawtchouk Descriptors - projections in Krawtchouk functions:

Weighted Krawtchouk Polynomials

$\bar{K}(x ; p, N)=K_{n}(x ; p, N) \sqrt{\frac{w(x ; p, N)}{\rho(n ; p, N)}}$ on $x, n=0,1,2 \ldots N, N>0, p \in(0,1)$
$K_{n}(x ; p, N)={ }_{2} F_{1}\left(-n,-x ;-N ; \frac{1}{2}\right)$, - non-weighted Krawtchouk polynomials, $w(x ; p, N)=\binom{N}{x} p^{x}(1-p)^{N-x}-$ weight function,
$\rho(n ; p, N)=(-1)^{n}\left(\frac{1-p}{p}\right)^{n} \frac{n!}{(-N)_{n}}$ - normalization constant.

The projections of f on $\bar{K}(x ; p, N)$:

$$
\langle f, \bar{K}\rangle
$$

- are called Weighted Krawtchouk Moments of function f.

The moments in 3D case were introduced by (Mademlis et.al.)

"Hypothesis" - 1 (My focus)

3D Krawtchouk Descriptors - projections in Krawtchouk functions:

Weighted Krawtchouk Polynomials

$\bar{K}(x ; p, N)=K_{n}(x ; p, N) \sqrt{\frac{w(x ; p, N)}{\rho(n ; p, N)}}$ on $x, n=0,1,2 \ldots N, N>0, p \in(0,1)$
$K_{n}(x ; p, N)={ }_{2} F_{1}\left(-n,-x ;-N ; \frac{1}{2}\right)$, - non-weighted Krawtchouk polynomials, $w(x ; p, N)=\binom{N}{x} p^{x}(1-p)^{N-x}-$ weight function,
$\rho(n ; p, N)=(-1)^{n}\left(\frac{1-p}{p}\right)^{n} \frac{n!}{(-N)_{n}}-$ normalization constant.

Hypergeometric function

${ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}$, where $(a)_{k}=a(a+1)(a+2) \ldots(a+k-1)$.
The projections of f on $\bar{K}(x ; p, N)$:

$$
\langle f, \bar{K}\rangle
$$

- are called Weighted Krawtchouk Moments of function f.

The moments in 3D case were introduced by (Mademlis et.al.)

"Hypothesis" - 2 (My focus)

Weighted 3D Krawtchouk Moments (Mademlis et.al. 2006)

Given $f(x, y, z)$ - a 3D function defined in a discrete field
$A=(x, y, z): x, y, z \in \mathbb{N}, x=[0 \ldots N-1], y=[0 \ldots M-1], z=[0 \ldots L-1]$
Weighted 3D Krawtchouk Moments of order $(n+m+l)$ of f :
$\bar{Q}_{n m l}=\sum_{x=0}^{N-1} \sum_{y=0}^{M-1} \sum_{z=0}^{L-1} \bar{K}_{n}\left(x ; p_{x}, N-1\right) \times \bar{K}_{m}\left(y ; p_{y}, M-1\right) \times \bar{K}_{l}\left(z ; p_{z}, L-1\right) \times f(x, y, z)$
Weighted Krawtchouk moments can be used as descriptor of any 3D object, if it can be expressed as a function $f(x, y, z)$ defined in a discrete space $[0 \ldots N-1] \times[0 \ldots M-1] \times[0 \ldots L-1]$, e.g., if model is expressed as a binary volumetric function (e.g., 3D grid with voxels each carrying 1 bit of information).
The descriptor vector then is defined as:
$D=\left[\bar{Q}_{n m l} \mid n+m+I \in[0 \ldots s]\right]$
Notice that feature map:

$$
\mathcal{F}:\left(x^{1}, x^{2}, \ldots, x^{L A R G E}\right) \mapsto\left[\bar{Q}_{n m /}^{1}(\mathbf{x}), \bar{Q}_{n m /}^{2}(\mathbf{x}),, \ldots, \bar{Q}_{n m l}^{S M A L L}(\mathbf{x})\right]
$$

Goals

- Implement the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
Compute 3D Krawtchouk descriptors for a set of proteins. Create a simple classifier working based on the features. Evaluate classification and retrieval performance. Compare it to retrieval with other available methods, like TM-Align.

Goals

- Implement the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
- Compute 3D Krawtchouk descriptors for a set of proteins.

Create a simple classifier working based on the features.
Evaluate classification and retrieval performance.
Compare it to retrieval with other available methods, like TM-Align.

Goals

- Implement the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
- Compute 3D Krawtchouk descriptors for a set of proteins.
- Create a simple classifier working based on the features.

Evaluate classification and retrieval performance.
Compare it to retrieval with other available methods, like TM-Align.

Goals

- Implement the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
- Compute 3D Krawtchouk descriptors for a set of proteins.
- Create a simple classifier working based on the features.
- Evaluate classification and retrieval performance.

Compare it to retrieval with other available methods, like TM-Align.

Goals

- Implement the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
- Compute 3D Krawtchouk descriptors for a set of proteins.
- Create a simple classifier working based on the features.
- Evaluate classification and retrieval performance.
- Compare it to retrieval with other available methods, like TM-Align.

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -

Octave (Opensource MATLAB equivalent)
Computation of \bar{K} matrix -

Classifier and ROC analysis -

Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)

Computation of \bar{K} matrix -

Classifier and ROC analysis -

Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -

Maple (Maplesoft, proprietary, licensed) Custom C code
Classifier and ROC analysis -

Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)

Classifier and ROC analysis -

Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code

Classifier and ROC analysis -

Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code
- Classifier and ROC analysis -

Custom C code
Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code
- Classifier and ROC analysis -
- Python

NumPy
Pytave
Custom C code
Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code
- Classifier and ROC analysis -
- Python
- NumPy

Custom C code
Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code
- Classifier and ROC analysis -
- Python
- NumPy
- Pytave

Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code
- Classifier and ROC analysis -
- Python
- NumPy
- Pytave
- Custom C code

Hardware
Kiharalab computers
BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code
- Classifier and ROC analysis -
- Python
- NumPy
- Pytave
- Custom C code

Hardware

- Kiharalab computers

BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code
- Classifier and ROC analysis -
- Python
- NumPy
- Pytave
- Custom C code

Hardware

- Kiharalab computers
- BoilerGrid computers

Methods - 1 - (Tools, Computational Environment)

Software

- Data standardization and PCA -
- Octave (Opensource MATLAB equivalent)
- Computation of \bar{K} matrix -
- Maple (Maplesoft, proprietary, licensed)
- Custom C code
- Classifier and ROC analysis -
- Python
- NumPy
- Pytave
- Custom C code

Hardware

- Kiharalab computers
- BoilerGrid computers
- 30,717 $\times 86$ _64-Linux cores using Condor system.

Methods - 2 (Technical Details)

Computing the $\bar{K}(x ; p, N)$ - Weighted Krawtchouk Polynomials

Maple code

$$
\begin{aligned}
& K:=(n, x, p, N) \rightarrow \text { hypergeom }\left([-n,-x],[-N], \frac{1}{p}\right) \\
& \omega:=(x, p, N) \rightarrow \operatorname{binomial}(N, x) p^{x}(1-p)^{(N-x)} \\
& \rho:=(n, p, N) \rightarrow \frac{(-1)^{n}\left(\frac{1-p}{p}\right)^{n} n!}{\text { pochhammer }(-N, n)} \\
& >\quad K w:=(n, x, p, N)->K(n, x, p, N) * s q r t(o m e g a(x, p, N) / r h o(n, p, N)) ; \\
& K w:=(n, x, p, N) \rightarrow K(n, x, p, N) \sqrt{\frac{\omega(x, p, N)}{\rho(n, p, N)}} \\
& >\operatorname{Kw}(1,3,0.5,10) \text {; We get Weighted Krawtchouk Polynomials } \\
& 0.4330127020 \\
& >\operatorname{plot}(K w(1, x, 0.5,3), x) ; n=1, p=0.5, N=3
\end{aligned}
$$

Methods - 2 (Technical Details)

Plot of a weighted Krawtchouk polynomial

$>\operatorname{plot}(\operatorname{Kw}(1, x, 0.5,3), x)$;

Obtain and save $\bar{K}(n, x, p, N)$ for $n=[0 . .159], x=[0 . .159]$, with $p=0.5, N=160$.

Methods - 2 (Technical Details)

Plot of a weighted Krawtchouk polynomial

```
> plot(Kw(1,x,0.5,3),x);
```


- Obtain and save $\bar{K}(n, x, p, N)$ for $n=[0 . .159], x=[0 . .159]$, with $p=0.5, N=160$.

Methods - 3 (Technical Details)

Weighted 3D Krawtchouk Moments of order $(n+m+l)$ of f

$$
\bar{Q}_{n m l}=\sum_{x=0}^{N-1} \sum_{y=0}^{M-1} \sum_{z=0}^{L-1} \bar{K}_{n}(x ; p, N-1) \bar{K}_{m}(y ; p, M-1) \bar{K}_{l}(z ; p, L-1) f(x, y, z)
$$

\square
\square
\qquad
\qquad
\qquad
\qquad

Methods - 3 (Technical Details)

Weighted 3D Krawtchouk Moments of order $(n+m+l)$ of f

$$
\bar{Q}_{n m l}=\sum_{x=0}^{N-1} \sum_{y=0}^{M-1} \sum_{z=0}^{L-1} \bar{K}_{n}(x ; p, N-1) \bar{K}_{m}(y ; p, M-1) \bar{K}_{l}(z ; p, L-1) f(x, y, z)
$$

Quick multiplication with C

```
FILE *poly = fopen( argv[1], "r" ); # file containing precomputed values of Krawtchouk Polynomials
FILE *file = fopen( argv[2], "r" ); # file containing protein 3D grid data
// --- START --- //
for (i = 0; i < size_poly; i++) fscanf(poly, "%f", &info[i]);
for (i = 0; i < size_file; i++) fscanf(file, "%f", &data[i]);
for (x = 0; x <= 159; x++)
    for (y = 0; y <= 159; y++)
        for (z = 0; z <= 159; z++)
            s += info[n*160+x]*info[m*160+y]*info[1*160+z]*data[x*25600+y*160+z];
```

printf("\%f\n", s);
// --- FINISH --- //
free(info); free(data);

Methods - 3 (Technical Details)

Octave code - for data prep. and PCA

```
function [Y] = fun(fname)
D = load (fname, '-ascii');
query = reshape(D, 160, 160, 160);
X = [];
for i=1:160,
    for j=1:160,
        for k=1:160,
            if query(i,j,k) == 1,
                X = [X; [i j k]];
            end
        end
    end
end
EX = mean(X); CX = X - repmat(EX,rows(X),1);
p = princomp(CX);
P = [];
P(:,:,1) = [p(1:end,1) p(1:end,2) -p(1:end,3)];
for i=1:8,
    x_result = 80+round(CX*P(:,:,i));
    x_output = zeros(160, 160, 160);
    for m=1:rows(x_result),
        x_output(x_result (m,1), x_result (m,2), x_result (m,3)) = 1;
    end
    x_data = reshape(x_output, 1, 4096000);
    file_name = strcat('/home/mindey/kihara/glued160/example/x_',num2str(i));
    x_fid = fopen(file_name, 'w');
    fprintf(x_fid, ' %i', x_data);
    fclose(x_fid);
```

end

Methods - 3 (Technical Details)

Python code - 1

```
# 1. Read .grid filenames in the folder
import os
import pytave
import numpy
import shlex, subprocess
dir = '/home/mindey/kihara/glued160/example'
filenames = os.listdir(dir)
filelist = []
for filename in filenames:
    if ('.grid' in filename):
        filelist.append(filename)
```

\# 2. For each file do both normal PCA, and 8 types of pca fo each protein in the database, and compute
\# their moments. Save these moments to files.
for fn in filelist:
loc = dir+'/'+str(fn)
$\mathrm{fm}=\mathrm{fn}[0:-4]+$ ' 8 moms '
if fm not in filenames:
F = open(dir+'/'+fm, 'w')
\# Doing PCA, writing $x_{-} 1, x_{_} 2, \ldots, x_{-} 8$
res = pytave.feval(1, "fun", loc)
for it in range(8):
if it < 8:
eol $=$ ' $\backslash n$ '
\# Computing moments
$m=$ os.popen("./sum M.txt /home/mindey/kihara/glued160/example/x_"+str(it+1))
M = m.readlines() [0]+eol
\# Writing them to files with .8moms extension
F.write(M)

Methods - 3 (Technical Details)

Python code - 2

```
# Writing them to files with .8moms extension
F.write(M)
os.system("rm /home/mindey/kihara/glued160/example/x_*")
F.close()
#M = numpy.array([float(s) for s in m[0].split()])
# Getting filenames again
filenames = os.listdir(dir)
filelist = []
counter = 0
for ix, filename in enumerate(filenames):
    if ('.8moms' in filename):
            filelist.append(filename)
            print str(counter)+". ", filelist[counter]
            counter += 1
# Letting the user choose query
query_id = int(raw_input('Choose query id: '))
# Reading the query protein's eighth line
pcaln = open(dir+'/'+filelist[query_id], 'r')
# print dir+'/'+filelist[query]
query = numpy.array([float(val) for val in pcaln.readlines()[7].split()])
pcaln.close()
# Defining distance
distance = lambda x, y: (sum(abs(x-y)**2))**0.5
# Creating database of remaining moments
database = []
# By opening each other protein's 8mom file and choose the descriptor which is nearest to the query
```


Methods - 3 (Technical Details)

Python code - 3

\# By opening each other protein's 8mom file and choose the descriptor which is nearest to the query
for ix, filename in enumerate(filelist):
$\mathrm{m} 8=$ open(dir+'/'+filename, 'r').readlines()
$\mathrm{d} 8=$ []
for line in m8:
pca8 = numpy.array([float(val) for val in line.split()])
d8.append(distance(query, pca8))
\# Search for nearest moments to the "pca" by distance, and append it to database
D8 = numpy. array (d8)
\# With normal PCA alignment:
\# database.append(numpy.array([float(val) for val in m8[7].split()]))
\# With optimized (argmin) PCA alignment:
database.append(numpy.array([float(val) for val in m8[int(D8.argmin())].split()]))
\# Query database for distances to query
distances $=$ \{\}
for $d b _i d$, descriptors in enumerate(database):
distances[db_id] = distance (query, descriptors)
\# Sort the dictionary of results
order = sort_by_values(distances)
\# Print query results
print 'Query: '+str(query_id)+'. '+filelist[query_id]
print 'Results: '
for ix in order:
if ix < 10:
print , '+str(ix)+'.',
else:
print $\operatorname{str}(i x)+$ '.',

Methods - 3 (Technical Details)

I had also used some code for running programs in Condor, by an example provided by PhD. student David La.

```
Example code run on Condor
# Header Stuff
Executable = test.py
Universe = vanilla
notification=never
requirements = ( ( OpSys == "LINUX" ) && ( regexp("hamlet",Name) == FALSE ) && ( machine != "dragon.bio.purd
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
on_exit_remove = ( (ExitBySignal == False) && (ExitCode == 0) )
# First Run
Arguments =
Output = ./output/test1_$(process).out
Error = ./err/test1_.$(process).err
LOG = ./log/test1_.$(process).log
transfer_input_files = ./pdbs/1bi9-A.pdb, ./pdbs/1moh.pdb, CE, ./pom/mkDB, ./pom/mkDB_sgi, ./pom/mkDB_sun,
Queue
```


Conclusions - 1 (Results)

- Implemented the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
Computed 3D Krawtchouk descriptors for a set of proteins. Created a simple classifier working based on the features. Evaluated classification and retrieval performance. Compared it to retrieval with other available method: TM-Align.

Conclusions - 1 (Results)

- Implemented the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
- Computed 3D Krawtchouk descriptors for a set of proteins.

Created a simple classifier working based on the features.
Evaluated classification and retrieval performance.
Compared it to retrieval with other available method TM-Align.

Conclusions - 1 (Results)

- Implemented the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
- Computed 3D Krawtchouk descriptors for a set of proteins.
- Created a simple classifier working based on the features.

Evaluated classification and retrieval performance.
Compared it to retrieval with other available method: TM-Align.

Conclusions - 1 (Results)

- Implemented the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
- Computed 3D Krawtchouk descriptors for a set of proteins.
- Created a simple classifier working based on the features.
- Evaluated classification and retrieval performance.

Compared it to retrieval with other available method: TM-Align.

Conclusions - 1 (Results)

- Implemented the 3D Krawtchouk descriptors' computational algorithm, as described by (Mademlis et.al., 2006)
- Computed 3D Krawtchouk descriptors for a set of proteins.
- Created a simple classifier working based on the features.
- Evaluated classification and retrieval performance.
- Compared it to retrieval with other available method: TM-Align.

Conclusions - 2 (Details)

- On Kiharalab's computers, running the code for a few weeks, computed the Krawtchouk moments for 2434 proteins, for which the voxel grid files were available.
On Kiharalab's computers, I was running the TM-Align algorithm for
around a week, and obtained 5924356 comparison scores, ncessary
for ROC analysis.
On Condor, I was running the CE (Combinatorial Extension) algorithm for a month, and obtained 5924356 comparison scores. Using these scores, and features, I evaluated the protein retrieval in terms correct protein class, and summarized it in precision-recall characteristics.

Conclusions - 2 (Details)

- On Kiharalab's computers, running the code for a few weeks, computed the Krawtchouk moments for 2434 proteins, for which the voxel grid files were available.
- On Kiharalab's computers, I was running the TM-Align algorithm for around a week, and obtained 5924356 comparison scores, ncessary for ROC analysis.
On Condor, I was running the CE (Combinatorial Extension) algorithm for a month, and obtained 5924356 comparison scores.

Using these scores, and features, I evaluated the protein retrieval in
terms correct protein class, and summarized it in precision-recall characteristics

Conclusions - 2 (Details)

- On Kiharalab's computers, running the code for a few weeks, computed the Krawtchouk moments for 2434 proteins, for which the voxel grid files were available.
- On Kiharalab's computers, I was running the TM-Align algorithm for around a week, and obtained 5924356 comparison scores, ncessary for ROC analysis.
- On Condor, I was running the CE (Combinatorial Extension) algorithm for a month, and obtained 5924356 comparison scores.

Using these scores, and features, I evaluated the protein retrieval in
terms correct protein class, and summarized it in precision-recall
characteristics.

Conclusions - 2 (Details)

- On Kiharalab's computers, running the code for a few weeks, computed the Krawtchouk moments for $\mathbf{2 4 3 4}$ proteins, for which the voxel grid files were available.
- On Kiharalab's computers, I was running the TM-Align algorithm for around a week, and obtained 5924356 comparison scores, ncessary for ROC analysis.
- On Condor, I was running the CE (Combinatorial Extension) algorithm for a month, and obtained 5924356 comparison scores.
- Using these scores, and features, I evaluated the protein retrieval in terms correct protein class, and summarized it in precision-recall characteristics.

Conclusions - 3 (Details)

Retrieval Summary - Krawtchouk moments vs TM-Align

	Top 1	Top 5	Top 10	AUC
Kawtchouk features	0.80	0.74	0.60	0.878
Full data TM-Align	0.89	0.86	0.73	0.937

Emphasis: the retrieval is worse, but many orders of magnitued faster.

Conclusions - 3 (Details)

Retrieval Summary - Krawtchouk moments vs TM-Align

	Top 1	Top 5	Top 10	AUC
Kawtchouk features	0.80	0.74	0.60	0.878
Full data TM-Align	0.89	0.86	0.73	0.937

Precision-recall - Krawtchouk moments vs TM-Align
Emphasis: the retrieval is worse, but many orders of magnitued faster.

Future work

- Estimate ROC confidence intervals.

Investigate local feature extraction (i.e., vary p in $\bar{K}(n, x, p, N)$.)
Compare results directly to Zernike descriptor results.
Investigate rotational invariance of Krawtchouk moments.
Extend the moments to higher dimensions (e.g., protein motion patterns).

Future work

- Estimate ROC confidence intervals.
- Investigate local feature extraction (i.e., vary p in $\bar{K}(n, x, p, N)$.)

Compare results directly to Zernike descriptor results.
Investigate rotational invariance of Krawtchouk moments.
Extend the moments to higher dimensions (e.g., protein motion patterns).

Future work

- Estimate ROC confidence intervals.
- Investigate local feature extraction (i.e., vary p in $\bar{K}(n, x, p, N)$.)
- Compare results directly to Zernike descriptor results. Investigate rotational invariance of Krawtchouk moments. Extend the moments to higher dimensions (e.g., protein motion patterns)

Future work

- Estimate ROC confidence intervals.
- Investigate local feature extraction (i.e., vary p in $\bar{K}(n, x, p, N)$.)
- Compare results directly to Zernike descriptor results.
- Investigate rotational invariance of Krawtchouk moments.

Extend the moments to higher dimensions (e.g., protein motion patterns)

Future work

- Estimate ROC confidence intervals.
- Investigate local feature extraction (i.e., vary p in $\bar{K}(n, x, p, N)$.)
- Compare results directly to Zernike descriptor results.
- Investigate rotational invariance of Krawtchouk moments.
- Extend the moments to higher dimensions (e.g., protein motion patterns).

Acknowledgements

- Prof. Daisuke Kihara

Dr. Sael Lee
Postdoc. Hyung Rae Kim
Postdoc. Bin Li
Dr. David La
PULSe

Acknowledgements

- Prof. Daisuke Kihara
- Dr. Sael Lee

Postdoc. Hyung Rae Kim
Postdoc. Bin Li
Dr. David La
PULSe

Acknowledgements

- Prof. Daisuke Kihara
- Dr. Sael Lee
- Postdoc. Hyung Rae Kim Postdoc. Bin Li Dr. David La PIIISe

Acknowledgements

- Prof. Daisuke Kihara
- Dr. Sael Lee
- Postdoc. Hyung Rae Kim
- Postdoc. Bin Li

Dr. David La PULSe

Acknowledgements

- Prof. Daisuke Kihara
- Dr. Sael Lee
- Postdoc. Hyung Rae Kim
- Postdoc. Bin Li
- Dr. David La

Acknowledgements

- Prof. Daisuke Kihara
- Dr. Sael Lee
- Postdoc. Hyung Rae Kim
- Postdoc. Bin Li
- Dr. David La
- PULSe

