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Problem: large protein databases are hard to search.

79180 of structures in the Protein Data Bank (7 Feb 2012)

2.19 A - high resolution of available structures

A solution: Feature Extracti
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Background - 2

Problem: large protein databases are hard to search.
79180 of structures in the Protein Data Bank (7 Feb 2012)
2.19 A - high resolution of available structures

Feature Extraction (Example)

If we want to classify triangles into obtuse, right and acute:

We can speed up the process by creating features by feature map
7 1
Fix=(o,f,7) = (F(x)),

Where F(x) = (max(x)).

Dimensionality-Reduction
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Background - 3a

Moments as Features In statistics, the n'" raw moment of a discrete
distribution is defined as:

—+00
o= Y X' pi

I=—00

Example: statistical mean is the 1°* raw moment:
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Background - 3a

Moments as Features In statistics, the n'" raw moment of a discrete
distribution is defined as:

—+00
o= Y X' pi

i=—00

Example: statistical mean is the 1°* raw moment:

i=1 Xi * Pi» Where pi = % _
relative frequency of i" observation in sample (M < N € N).

> 1%t raw moment of a sample: 2} = S°M

> uy = (x1, %0, -, xm) - (P1, P2y s PM) | - in terms of matrix notation.
» uy = (X, P) - in terms of inner product, "X projection on g’

X - our data, can similarly be projected on other functions, and it is
common to denote it as (x, - ), where the dot - denotes other function.
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Background - 3b

Other commonly known moments in inner product notation:

Variance

po = E [(X —p)?] = <(X - u)g,ﬁx_u>

Main idea: moments characterize shape of a distribution.
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Background - 3b

Other commonly known moments in inner product notation:

Variance

po = E [(X —p)?] = <(X = M)275X—u>

Skewness

=€ [(52)"] = (529" )
=g [(52)] = ((52)" )

Main idea: moments characterize shape of a distribution.
More generally - shape of a function, such as f(x,y, z) - our data.
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Background - 3c (Dr. Sael Lee's focus)

3D Zernike Descriptors - data f projections in Zernike functions:
Zm(r, 0, 0) = Ru(r) Y™ (¢, ®), where Y™(i, ¢) are spherical harmonics of the /™
degree with / < n, m € [—1, 1], and n — | even non-negative.

Rni(r) are radial polynomials, where r is the radius defined so that Z}(x) are
orthonormal polynomials, when written in Cartesian coordinates.

For a 3D function f(x) where x € R3, the 3D Zernike moments are given by:

= (f, Z Xooim Mrst
r+s+t<n
The above equation is expressed as a linear combination of geometric moments of
order n where M, denotes the geometrical moment of the object normalized to
fit in the unit sphere and x5 is a set of complex coefficients.
Since thus defined moments are not rotationally invariant, they are collected into
(21 4 1)-dimensional vectors and the norms (|| - ||) of the vectors

Q. = [QL,, ..‘,Q;,’] define the rotationally invariant 3D Zernike descriptors:
Fr = HQn/H
F (X17X27"'7XLARGE) = I:FI}I(X)7F31(X) FSMALL( )}
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"Hypothesis” - 1 (My focus)

3D Krawtchouk Descriptors - projections in Krawtchouk functions:

Weighted Krawtchouk Polynomials

K(x; p, N) = Ky(x; p, N) V;((;;g’,'vv)) onx,n=0,1,2..N, N >0, pe (0,1)

K (x P, N) =5 F1(—n,—x; —N, %), - non-weighted Krawtchouk polynomials,
X p, N (Q’)p (1 p - weight function,
p(m p,N) = (1 ) Y " normalization constant.

The projections of f on K(x; p, N):
(f,K)

- are called Weighted Krawtchouk Moments of function f.

The moments in 3D case were introduced by (Mademlis et.al.)
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3D Krawtchouk Descriptors - projections in Krawtchouk functions:

Weighted Krawtchouk Polynomials

K(x; p, N) = Ky(x; p, N) V;((;;g’,'vv)) onx,n=0,1,2..N, N >0, pe (0,1)

Ka(x; p, N) =2 F1(—n,—x; =N, %) - non-weighted Krawtchouk polynomials,
w(x; p, N) = (Q’) p*(1 — p)N=> - weight function,
p(n; p, N) = (-1)" (l;pp) ﬁ - normalization constant.

Hypergeometric function

2Fi(a, b ¢ 2) = Y002, e 22 where ()i = a(a+1)(a+2)...(a+ k — 1).

C)k kU

The projections of f on K(x; p, N):
(f,K)
- are called Weighted Krawtchouk Moments of function f.

The moments in 3D case were introduced by (Mademlis et.al.)
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"Hypothesis” - 2 (My focus)

Weighted 3D Krawtchouk Moments (Mademlis et.al. 2006)
Given f(x,y, z) - a 3D function defined in a discrete field

A=(x,y,2): x,y,z€ N, x=[0..N—-1],y =[0..M —1],z=[0...L — 1]
Weighted 3D Krawtchouk Moments of order (n+ m+ 1) of f:

2

—1M-1L-1
6nm/ = ?n(X; Px> N_]-)X?m(y; Py, M_]-)XR/(Z; Pz, L_l)Xf(X7Y7Z)

X

Il
<)

y=0 z=0

Weighted Krawtchouk moments can be used as descriptor of any 3D object, if it
can be expressed as a function f(x,y, z) defined in a discrete space

[0..N—1] x [0..M —1] x [0...L—1], e.g., if model is expressed as a binary
volumetric function (e.g., 3D grid with voxels each carrying 1 bit of information).
The descriptor vector then is defined as:

D = [Qum|n+ m+1€][0..5]]

Notice that feature map:

‘7:: (X17X27 "'7XLARGE) = [6117ml(x)76121ml(x)m~~36§ZIALL(X):|
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Goals

Implement the 3D Krawtchouk descriptors’ computational algorithm,
as described by (Mademlis et.al., 2006)
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Goals

Implement the 3D Krawtchouk descriptors’ computational algorithm,
as described by (Mademlis et.al., 2006)

Compute 3D Krawtchouk descriptors for a set of proteins.
Create a simple classifier working based on the features.
Evaluate classification and retrieval performance.

Compare it to retrieval with other available methods, like TM-Align.
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Methods - 1 - (Tools, Computational Environment)

Software
Data standardization and PCA -

Hardware
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Methods - 1 - (Tools, Computational Environment)

Software
Data standardization and PCA -
Octave (Opensource MATLAB equivalent)
Computation of K matrix -

Maple (Maplesoft, proprietary, licensed)
Custom C code

Classifier and ROC analysis -
Python

NumPy
Pytave

Custom C code
Hardware

Kiharalab computers
BoilerGrid computers
30,717 x86_64-Linux cores using Condor system.
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Methods - 2 (Technical Details)

Computing the K(x; p, N) - Weighted Krawtchouk Polynomials

Maple code

> restart: with(plots):

> K := (n,x,p,N) -> hypergeom([-n,-x],[-N],1/p);
1
K :=(n, x, p, N) = hypergeom([—n, —x], [=N], —)
P

w = (x, p, N) = binomial(N, x) p* (1 — p)(N*X)

1—
(-1 (—2ym
P

p=(mp,N)» —M
( 24 pochhammer(—N, n)

> Kw := (n,x,p,N) -> K(n,x,p,N)*sqrt(omega(x,p,N)/rho(n,p,N));

w(x, p, N)

Kw := (n, x, p, N) = K(n, x, p, N)
p(n, p, N)

> Kw(1,3,0.5,10); We get Weighted Krawtchouk Polynomials

0.4330127020
> plot(Kw(1,x,0.5,3),x); n=1, p=0.5, N=3

Mindaugas Indritinas (Mindey) (Purdue Unive PRS & KWs February 20, 2012 11 /23



Plot of a weighted Krawtchouk polynomial

> plot(Xw(1,x,0.5,3),x);
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Methods - 2 (Technical Details)

Plot of a weighted Krawtchouk polynomial

> plot(Xw(1,x,0.5,3),x);

0.64\
044 |

|
0,2+
|

—0.2 1

—0.4

Obtain and save K(n, x, p, N) for n = [0..159], x = [0..159],
with p = 0.5, N = 160.
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Methods - 3 (Technical Details)

Weighted 3D Krawtchouk Moments of order (n+ m + /) of f

Qnmi = Kn(x; p, N=1)Km(y; p, M—1)K(z; p, L—1)f(x,y, 2)
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Weighted 3D Krawtchouk Moments of order (n+ m + /) of f

11— 1

1M—
Z Ka(x; p, N—=1)Km(y; p, M—1)K(z; p, L—1)f(x, y, z)
y=0 z=0

C?nm/ —

HMZ

N

Quick multiplication with C

FILE *poly = fopen( argv[i], "r" ); # file containing precomputed values of Krawtchouk Polynomials
FILE #file = fopen( argv[2], "r" ); # file containing protein 3D grid data

// --- START --- //

for (i 0; i < size_poly; i++) fscanf(poly, "%f", &infol[il);

for (i = 0; i < size_file; i++) fscanf(file, "}f", &datal[il);

for (x = 0; x <= 159; x++)
for (y = 0; y <= 1569; y++)
for (z = 0; z <= 159; z++)
s += info[n*160+x]*info [m*160+y]*info [1*160+z]*data [x*25600+y*160+z] ;
printf ("%f\n", s);
// --- FINISH --- //

free(info); free(data);
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e code - for data prep. and PCA

function [Y] = fun(fname)

D = load (fname, ’-ascii’);
query = reshape(D, 160, 160, 160);
X=10;
for i=1:160,
for j=1:160,
for k=1:160,

if query(i,j,k) == 1,
X = [X; [ij x11;
end
end
end
end
EX = mean(X); CX = X - repmat(EX,rows(X),1);
p = princomp(CX);
P = [1;
P(:,:,1) = [p(1:end,1) p(i:end,2) -p(l:end,3)];

for i=1:8,
x_result = 80+round (CX*P(:,:,i));
x_output = zeros(160, 160, 160);
for m=1:rows(x_result),
x_output (x_result(m,1),x_result(m,2),x_result(m,3)) = 1;
end
x_data = reshape(x_output, 1, 4096000) ;
file_name = strcat(’/home/mindey/kihara/glued160/example/x_’,num2str(i));
x_fid = fopen(file_name, ’w’);
fprintf(x_fid, ’> %i’, x_data)
fclose(x_fid);

end
Mindaugas Indritinas (Mindey) (Purdue Unive PRS & KWs February 20, 2012 14 /23



Methods - 3 (Technical Details)

Python code - 1

# 1. Read .grid filenames in the folder
import os

import pytave

import numpy

import shlex, subprocess

dir = ’/home/mindey/kihara/glued160/example’
filenames = os.listdir(dir)
filelist = []
for filename in filenames:
if (°.grid’ in filename):
filelist.append(filename)

# 2. For each file do both normal PCA, and 8 types of pca fo each protein in the database, and compute
# their moments. Save these moments to files.
for fn in filelist:
loc = dir+’/’+str(fn)
fm = fn[0:-4]+’8moms’
if fm not in filenames:
F = open(dir+’/’+fm, ’w’)
# Doing PCA, writing x_1, x_2, ..., x_8
res = pytave.feval(1, "fun", loc)
for it in range(8):
if it < 8:
eol = ’\n’
Computing moments
= os.popen("./sum M.txt /home/mindey/kihara/glued160/example/x_"+str(it+1))
= m.readlines() [0]+eol
Writing them to files with .8moms extension
write (M)
Mindaugas Indritinas (Mindey) (Purdue Unive PRS & KWs February 20, 2012 15 / 23
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Methods - 3 (Technical Details)

Pyt code - 2

# Writing them to files with .8moms extension

F.write(M)
os.system("rm /home/mindey/kihara/glued160/example/x_*")
F.close()

#M = numpy.array([float(s) for s in m[0].split()])

# Getting filenames again

filenames = os.listdir(dir)

filelist = []

counter = 0

for ix, filename in enumerate(filenames):

if (°.8moms’ in filename):

filelist.append(filename)
print str(counter)+". ", filelist[counter]
counter += 1

# Letting the user choose query

query_id = int(raw_input(’Choose query id: ’))

# Reading the query protein’s eighth line

pcaln = open(dir+’/’+filelist[query_idl, ’r’)

# print dir+’/’+filelist[query]

query = numpy.array([float(val) for val in pcaln.readlines()[7].split()])
pcaln.close()

# Defining distance

distance = lambda x, y: (sum(abs(x-y)**2))**0.5

# Creating database of remaining moments

database = []

# By opening each other protein’s 8mom file and choose the descriptor which is nearest to the query

Mindaugas Indritinas (Mindey) (Purdue Unive PRS & KWs February 20, 2012 16 / 23



Methods - 3 (Technical Details)

# By opening each other protein’s 8mom file and choose the descriptor which is nearest to the query
for ix, filename in enumerate(filelist):
m8 = open(dir+’/’+filename, ’r’).readlines()
dg =[]
for line in m8:
pca8 = numpy.array([float(val) for val in line.split()])
d8.append(distance(query, pca8))
# Search for nearest moments to the "pca" by distance, and append it to database
D8 = numpy.array(d8)
# With normal PCA alignment:
# database.append (numpy.array([float(val) for val in m8[7].split()]))
# With optimized (argmin) PCA alignment:
database.append (numpy . array ([float(val) for val in m8[int(D8.argmin())].split()]))

# Query database for distances to query

distances = {}

for db_id, descriptors in enumerate(database):
distances[db_id] = distance(query, descriptors)

# Sort the dictionary of results
order = sort_by_values(distances)

# Print query results
print ’Query: ’+str(query_id)+’. ’+filelist[query_id]
print ’Results: ’
for ix in order:
if ix < 10:
print ’ ’+str(ix)+’.’,
else:

int str(ix)+’.’,
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Methods - 3 (Technical Details)

| had also used some code for running programs in Condor, by an example
provided by PhD. student David La.

Example code run on Condor

# Header Stuff

Executable = test.py
Universe = vanilla
notification=never

requirements = ( ( OpSys == "LINUX" ) && ( regexp("hamlet",Name) == FALSE ) && ( machine != "dragon.bio.purd

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

on_exit_remove = ( (ExitBySignal == False) && (ExitCode == 0) )

# First Run

Arguments =

Output = ./output/testi_$(process).out

Error = ./err/testl_.$(process).err

LOG = ./log/testl_.$(process).log

transfer_input_files = ./pdbs/1bi9-A.pdb, ./pdbs/imoh.pdb, CE, ./pom/mkDB, ./pom/mkDB_sgi, ./pom/mkDB_sun,
Queue
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Conclusions - 1 (Results)

Implemented the 3D Krawtchouk descriptors’ computational
algorithm, as described by (Mademlis et.al., 2006)
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Conclusions - 1 (Results)

Implemented the 3D Krawtchouk descriptors’ computational
algorithm, as described by (Mademlis et.al., 2006)

Computed 3D Krawtchouk descriptors for a set of proteins.
Created a simple classifier working based on the features.
Evaluated classification and retrieval performance.

Compared it to retrieval with other available method: TM-Align.
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Conclusions - 2 (Details)

On Kiharalab's computers, running the code for a few weeks,
computed the Krawtchouk moments for 2434 proteins, for which
the voxel grid files were available.
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Conclusions - 2 (Details)

On Kiharalab's computers, running the code for a few weeks,
computed the Krawtchouk moments for 2434 proteins, for which
the voxel grid files were available.

On Kiharalab’s computers, | was running the TM-Align algorithm for
around a week, and obtained 5924356 comparison scores, ncessary
for ROC analysis.

On Condor, | was running the CE (Combinatorial Extension)
algorithm for a month, and obtained 5924356 comparison scores.

Using these scores, and features, | evaluated the protein retrieval in
terms correct protein class, and summarized it in precision-recall
characteristics.
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Conclusions - 3 (Details)

Retrieval Summary - Krawtchouk moments vs TM-Align

Topl | Top 5 | Top 10 | AUC
Kawtchouk features | 0.80 0.74 0.60 0.878
Full data TM-Align 0.89 0.86 0.73 0.937

500 1000 1500 2000
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Retrieval Summary - Krawtchouk moments vs TM-Align

Topl | Top 5 | Top 10 | AUC
Kawtchouk features | 0.80 0.74 0.60 0.878
Full data TM-Align 0.89 0.86 0.73 0.937

Precision-recall - Krawtchouk moments vs TM-Align

Emphasis: the retrieval is worse, but many orders of magnitued faster.

500 1000 1500 2000
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Future work

Estimate ROC confidence intervals.
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Estimate ROC confidence intervals.

Investigate local feature extraction (i.e., vary p in K(n,x,p, N).)
Compare results directly to Zernike descriptor results.
Investigate rotational invariance of Krawtchouk moments.

Extend the moments to higher dimensions (e.g., protein motion
patterns).
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