$$ \begin{align} f(x_1,\ldots,x_k;n,p_1,\ldots,p_k) & {} = \Pr(X_1 = x_1\mbox{ and }\dots\mbox{ and }X_k = x_k) \\ \\ & {} = \begin{cases} { \displaystyle {n! \over x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k}}, \quad & \mbox{when } \sum_{i=1}^k x_i=n \\ \\ 0 & \mbox{otherwise,} \end{cases} \end{align} \quad s.t. \quad n > 0, \quad \Sigma p_i = 1, \quad X_i \in \{0,\dots,n\}, \quad \Sigma X_i = n\! $$ |